Meet Inspiring Speakers and Experts at our 3000+ Global Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series LLC Ltd : World’s leading Event Organizer

Conference Series LLC Ltd Conferences gaining more Readers and Visitors

Conference Series LLC Ltd Web Metrics at a Glance

  • 3000+ Global Events
  • 25 Million+ Visitors
  • 25000+ unique visitors per conference
  • 70000+ page views for every individual conference

Unique Opportunity! Online visibility to the Speakers and Experts

Separation Techniques Congress 2018

About Conference


Conferenceseries LLC ltd invites all the participants from all over the world to attend “10th International conference and Expo on separation techniques’’ during October 22-24, 2018 Budapest, Hungary which includes prompt keynote presentations, oral talks, exhibitions and poster presentations.

While much research and product development in industry is product oriented, it requires scientists with a grasp of the foundations of chemistry, creativity, the ability to work together, and enjoy seeing the practical applications of their work. Separation techniques 2018 covers all the aspects of related field researchers, the forum of scientists, and students from all corners of the globe, come together to discuss about separation technique and its advances.

Each session of the meeting will be included with expert lectures, poster and discussions, join us to design sustainable development processes, innovations by which and how these strategies drive new policies, advances the business and sustainability in drug production for further health care protection of lives. We are glad to invite you on behalf of organizing committee to join us, where you are the decision maker for future.

Target audience for separation techniques 2018:

Directors of analytical chemistry department in various Universities and institutions

Research laboratories Scientist, Research scholars

Professor and Associate professor of analytical chemistry

Analytical instrument manufacturing company

Analytical experts in chromatography

Marketing teams of Industries with novel products to show case at the conference

Theoretical scientists working on deriving analytical hypotheses

Analytical experts in Pharmaceutical and Life science

Industrial expertise working with various novel solid and liquid columns

Relevant Graduate and Post graduate students

ConferenceSeries LLC ltd organizes 1000+ conferences every year across USA, Europe & Asia with support from 1000 more scientific societies and publishes 700+ open access journals which contains over 30000 eminent personalities, reputed scientists as editorial board members. Separation techniques 2018 welcome attendees, presenters, and exhibitors from all over the world to Budapest Hungary. We are delighted to invite you all to attend and register for the “10th International conference and Expo on separation techniques (separation techniques 2018)” which is going to be held during October 22-24, 2018 in Budapest, Hungary.

Sessions Tracks

Track 1: Basic separation techniques

A mixture consisting of two or more substances that have been combined or mixed without chemical bonding taking place. In chemistry and chemical engineering, a separation process is used to transform a mixture of substances into two or more distinct products. The separated products could differ in chemical properties or some physical property, such as size, or crystal modification or other separation into different components. The suitability of a method depends on whether the mixture is a solution, solid-solid mixture, insoluble solid-liquid mixture or liquid-liquid immiscible mixture. In all cases the individual component usually retains its physical properties and this is what is exploited in separating it from the mixture. This track includes all the basic separation techniques like crystallization, distillation, centrifugation, filtration and other methods along with their advancements.

Track 2: Hyphenated separation techniques

The hyphenated technique is developed from the blending of a separation technique and an on-line spectroscopic detection technology. The significant improvements in hyphenated analytical methods over the last two decades have significantly broadened their applications in the analysis of biomaterials, especially natural products. This is useful for pre-isolation analyses of crude extracts or fraction from various natural sources, isolation and on-line detection of natural products, chemotaxonomic studies, chemical fingerprinting, quality control of herbal products, dereplication of natural products, and metabolomics

Track 3: Bio separation techniques

Bio separation is the name given to the practice of purifying biological products on large-scale, using fundamental aspects of engineering and scientific principles. The end goal of bio separation is to refine molecules, cells and parts of cells into purified fractions. Biological products can be separated and purified depending upon the following characteristics: density, diffusivity, electrostatic charge, polarity, shape, size, solubility and volatility.

Track 4: Membrane technology in separation techniques

Membrane technology is a proven separation method used on the molecular and ionic levels. The main force of membrane technology is the fact that it works without the addition of chemicals, with a relatively low energy use and easy and well-arranged process conductions. For some time, membrane separation technologies of reverse osmosis, ultra-filtration, Nano-filtration and micro-filtration have been used to concentrate and purify both small and large molecules.

Track 5: Application of separation techniques

Separation techniques are a part of separation science, involving the detailed study and controlled separation of mixtures .major advances in separation science have enabled biologists, chemists, pharmacists and environmentalists to make breakthroughs of their own. Genomics, drug discovery, DNA fingerprinting and ultra-trace residue analysis, for instance, would not be possible without recourse to the findings generated by separation science. 

Track 6: Analytical chemistry

Analytical chemistry is a branch of chemistry that deals with the separation, identification and quantification of chemical compounds. Chemical analyses can be qualitative, as in the identification of the chemical components in a sample, or quantitative, as in the determination of the amount of a certain component in the sample. Analytical chemistry is also focused on improvements in experimental design, chemo metrics, and the creation of new measurement tools. Analytical chemistry has broad applications to forensics, medicine, science and engineering.

Track 7: Chromatography as separation techniques

Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification.

Track 8: Spectroscopy as separation techniques

Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation–matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses.

Track 9: Advances in Chromatography and Mass Spectrometry

Chromatography and mass qualitative analysis is occupied for analysis of organic compounds. Electro spray ionization (ESI) could be a technique employed in mass spectroscopic analysis. Recent advances in sample preparation techniques to beat difficulties encountered throughout measuring of little molecules from bio fluids mistreatment LC-MS. Global bio analysis seminars are conducted and those specifically applied for chromatography assays, ligand binding assays to know more advances.

Track 10: Desalination and water purification

These technologies use heat evaporative systems, involve brine heaters, flash chambers and high temperature conversion processes in the conversion of seawater to fresh water.  This technology has demanded the use of a wide range of materials involving the copper-base (cupronickels), iron-base (stainless steels) and titanium.  Both the multi-stage flash (MSF) and the multi-effect distillation (med) processes are very capital intensive, with large footprints.

The membrane process, or reverse osmosis (RO), is the low-temperature, high-pressure process in achieving the same ends. At the same time, this is a separation process used in the optimization and purification of potable and drinking waters. This process can be modularized or built as a full-scale plant for conversion. 

Tracks 11: Recent trends in separation techniques

High-throughput separations (fast analysis) are in great demand in many fields, such as clinical, forensics, toxicology, environmental and pharmaceutical analyses.3 on the other hand, highly efficient separations are necessary for many applications, including metabolomics, proteomics and genomics. Very complex samples, such as biological materials, tryptic digests or natural plant extracts require highly efficient and fast analytical procedures to yield high resolution within an acceptable analysis time. The growing demand to enhance efficiency and reduce analysis speed directed many researchers to develop innovations in the traditional separation system.

Track 12: Separation techniques in pharmaceutical chemistry

The development of the pharmaceuticals brought a revolution in human health. These pharmaceuticals would serve their intent only if they are free from impurities and are administered in an appropriate amount. To make drugs serve their purpose various chemical and instrumental methods were developed at regular intervals which are involved in the estimation of drugs. These pharmaceuticals may develop impurities at various stages of their development, transportation and storage which makes the pharmaceutical risky to be administered thus they must be detected and quantitated. For this analytical instrumentation and methods play an important role.

Track 13: Advance in HPLC

High performance liquid chromatography has stood on a rock hard foundation and has seen several innovations which have met the growing expectations in separation techniques. It has been used in an extremely wide range of analytical methods and it is impossible to give a comprehensive set of examples that would illustrate its wide applicability in a variety of matrices. Some desirable features through several innovations which have made a remarkable contribution to the popularity of the HPLC technique in laboratories across the globe, like, high separation efficiencies with lowest column back pressures, separations over wide temperature ranges etc.

Track 14:  Separation techniques in chemical engineering

Chemical processes consist of separation stages in which the process streams are separated and purified. Heterogeneous mixtures consist of two or more phases which have different composition. These mixtures consist of components that do not react chemically and have clearly visible boundaries of separation between the different phases. Components of such mixture can be separated using one or more appropriate techniques. These separation processes includes gas-liquid (vapor-liquid) separation, gas-solid separation (vapor-solid), liquid-liquid separation (immiscible), liquid-solid, and solid-solid separation etc. This separation can be done by exploiting the differences in density between the phases. Gravitational force or centrifugal force can be used to enhance the separation.

Track 15: Bio magnetic separation techniques

Bio magnetic separation techniques have a wide range of applications in biosciences.The beads are uniform, mono-dispersed, paramagnetic, consisting of a nanometer-scale super paramagnetic iron oxide core encapsulated by a high purity silica shell. The silica is suitable for chromatography in order to purify target molecules. The technique is quick, simple and flexible for large and small samples overcoming the need to repeated centrifugation and pipetting.

 

To Collaborate Scientific Professionals around the World

Conference Date 22-Oct-2018

For Sponsors & Exhibitors

sponsors@conferenceseries.com

Speaker Opportunity

Past Conference Report

Supported By

All accepted abstracts will be published in respective Conference Series LLC LTD International Journals.

Abstracts will be provided with Digital Object Identifier by